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Abstract 

We analyze aircraft observations obtained during INTEX-A (1 July – 14 August 2004) to 

examine the summertime influence of Asian pollution in the free troposphere over North 

America.  By applying correlation analysis and Principal Component Analysis (PCA) to the 

observations between 6-12 km, we find dominant influences from recent convection and 

lightning (13% of observations), Asia (7%), the lower stratosphere (7%), and boreal forest fires 

(2%), with the remaining 71% assigned to background.  Asian airmasses are marked by high 

levels of CO, O3, HCN, PAN, acetylene, benzene, methanol, and SO4
2-.  The partitioning of 

reactive nitrogen species in the Asian plumes is dominated by PAN (~600 pptv), with varying 

NOx/HNO3 ratios in individual plumes consistent with different plumes ages ranging from 3 to 9 

days.  Export of Asian pollution in warm conveyor belts of mid-latitude cyclones, deep 

convection, and lifting in typhoons all contributed to the five major Asian pollution plumes.   

Compared to past measurement campaigns of Asian outflow during spring, INTEX-A 

observations display unique characteristics: lower levels of anthropogenic pollutants (CO, 

propane, ethane, benzene) due to their shorter summer lifetimes; higher levels of biogenic tracers 

(methanol and acetone) because of a more active biosphere; as well as higher levels of PAN, 

NOx, HNO3, and O3 (more active photochemistry possibly enhanced by injection of lightning 

NOx). The high ΔO3/ΔCO ratio (0.76 mol mol-1) of Asian plumes during INTEX-A is due to a 

combination of strong photochemical production and mixing with stratospheric air along 

isentropic surfaces. The GEOS-Chem global chemical transport model captures the timing and 

location of the Asian plumes remarkably well. However, it significantly underestimates the 

magnitude of the enhancements. 
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1. Introduction  

Many field campaigns and modeling studies have shown significant influences of 

transpacific transport of Asian pollution over North America during spring [e.g. Andreae et al., 

1988; Kritz et al., 1990; Parrish et al., 1992, 2004; Berntsen  et al., 1999; Yienger et al., 2000; 

Jacob et al., 1999; Jaffe et al., 1999, 2003; Nowak et al., 2004].   Not much attention has been 

paid to summertime transpacific transport, which is expected to be inefficient due to slow large-

scale flow and short lifetimes of many trace gases.  However, modeling studies have shown that 

even a small influence of Asian emissions over North America during summer can have 

significant implications for air quality regulation.  Fiore et al. [2002] found that anthropogenic 

emissions from Asia and Europe contribute 4-7 ppbv to summertime afternoon O3 concentrations 

in surface air over the U.S., potentially causing violations of the air quality standard.  Jacob et al. 

[1999] showed that tripling of Asian anthropogenic emissions from 1985 to 2010 will increase 

surface O3 in the United States (U.S.) by 1-5 ppbv during summer.    

Long-range transport of Asian pollution across the Pacific reaches a maximum in spring due 

to active cyclonic activity and strong westerly winds.  The strongest Asian outflow occurs in the 

middle troposphere [Bey et al., 2001b; Stohl, 2001; Stohl et al., 2002; Liu et al., 2003] and can be 

transported across the Pacific in 5-10 days [Jaffe et al., 1999, 2001; Yienger et al., 2000; Stohl et 

al., 2002; Liang et al., 2004].  During summer, export of Asian pollution by convection 

competes with export in mid-latitude cyclones, and transpacific transport occurs predominantly 

in the middle and upper troposphere with an average transpacific transport time of 6-10 days 

[Liang et al., 2004; Holzer et al., 2005].  In addition, a significant fraction of the summertime 

Asian outflow is transported westward to the Middle East rather than to the Pacific [Liu et al., 
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2002, 2003; Lelieveld et al., 2002]. The weaker Aleutian low during summer also leads to 

relatively slow and weak transport across the Pacific [Liang et al., 2005; Holzer et al., 2005].    

The Intercontinental Chemical Transport Experiment-Phase A (INTEX-A) aircraft mission 

was conducted during the summer of 2004 and focused on quantifying and characterizing the 

summertime inflow and outflow of pollution over North America [Singh et al., this issue].  

INTEX-A was part of the larger International Consortium for Atmospheric Research on 

Transport and Transformation (ICARTT) multi-platform field campaign aimed at examining 

regional air quality, intercontinental transport, and radiation balance in the atmosphere. 

During the INTEX-A mission several Asian plumes were predicted by forecast chemical 

transport models (CTMs) and then sampled by aircraft, displaying enhanced levels of many trace 

gases and aerosols.  INTEX-A observations thus offer the unprecedented opportunity to quantify 

the role of transpacific transport of Asian pollution during summer.  In this study we will analyze 

these observations to examine the chemical composition transport mechanisms of these plumes 

and contrast them to springtime observations.  Section 2 describes the observations and the 

model used in this study.  In section 3 we use Principal Component Analysis (PCA) to identify 

characteristic airmasses, in particular airmasses influenced by Asian pollution.  Transport 

mechanisms and chemical characteristics of the Asian plumes observed during INTEX-A are 

discussed in detail in section 4.  Conclusions are presented in Section 5. 

 

2. Observations and Model  

2.1 Observations 

A total of 18 flights were made by NASA’s DC-8 aircraft between 1 July and 14 August 

2004 during INTEX-A. The flights took place mostly over the United States, extending to the 
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Pacific Ocean in the west and Atlantic Ocean to the east. Flight tracks are shown on Figure 3.    

In situ observations included an extensive suite of measurements of ozone, aerosols and their 

precursors, as well as long-lived greenhouse gases, and many meteorological and optical 

parameters.  Table 1 summarizes the in situ observations used in this paper.  We also use remote 

sensing of ozone and aerosols (both zenith and nadir) on board the DC-8 with the Differential 

Absorption Lidar (DIAL) [Browell et al., 2003]. 

Some measurements were measured by two different techniques (HNO3 and H2O2), when 

both are available we average them. On several occasions, CO measurements were not available.  

CO is critical as a tracer of long-range transport in our analysis. As CO and C2H2 are highly 

correlated (r = 0.92 for all INTEX-A measurements), we replace these missing CO values with 

values derived based on observed C2H2-CO relationship: CO (ppbv) = 73 + 0.3336 * C2H2 (pptv).    

In order to examine the transport of Asian plumes across the Pacific, we complement these 

aircraft observations with space-based observations of CO from the Measurements of Pollution 

In The Troposphere (MOPITT) instrument [Drummond and Mand, 1996] on board Terra.   We 

use the level 2 V3 datasets that consist of retrieved CO mixing ratios at 7 vertical levels in the 

atmosphere (surface to 150 hPa).  However, the global average number of degrees of freedom in 

the MOPITT vertical profiles is less than 2 with strongest sensitivity in the middle troposphere 

[Deeter et al., 2003, 2004]. 

2.2 Model description 

GEOS-Chem CTM is driven by assimilated meteorological data compiled at the Goddard 

Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office.  The 

GEOS-4 meteorological fields have a horizontal resolution of 1°x1.25° and 55 vertical layers.  

We regrid the data into a horizontal resolution of 2°x2.5° and merge the upper 26 sigma layers 
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(<30 hPa) into one layer for computational efficiency.  The surface and upper level 

meteorological fields are updated every 3 and 6 hours, respectively.  For this study, we use 

model version v7.02.04 (http://www-as.harvard.edu/chemistry/trop/geos/index.html). 

The GEOS-Chem model simulates ozone-NOx-hydrocarbon-aerosol chemistry and involves 

50 tracers, over 80 chemical species and 300 reactions.  The ozone simulation [Bey et al., 2001a; 

Martin et al., 2002] is fully coupled to the aerosol simulation that includes sulfate-nitrate-

ammonium, organic and black carbon, soil dust, and sea salt [Park et al., 2003, 2004; Alexander 

et al., 2005; Fairlie et al., 2006].  We use a base anthropogenic emission inventory for 1985 

based on Global Emission Inventory Activity (GEIA) and scaled to 1998 following Bey et al. 

[2001a].  We use the updated U.S. Environmental Protection Agency (EPA) 1999 National 

Emission Inventory (NEI-99, http://www.epa.gov/ttn/chief/net/1999inventory.html) over the U.S. 

with a 50% decrease based on the ICARTT observations [Hudman et al., this issue].  Large fires 

occurred over Alaska and Canada during INTEX-A [Pfister et al., 2005; Morris et al., this issue].  

We use daily biomass burning emissions over North America derived using Moderate Resolution 

Imagine Spectroradiometer (MODIS) Active Fire and the area burned as reported by the 

National Interagency Coordination Center (NICC), contributing 27 Tg CO between 1 June and 

31 August 2004, 3 times the climatology (9 Tg CO) [Turquety et al., this issue].  Elsewhere, we 

use the monthly varying climatological biomass burning inventory of Duncan et al. [2003].  

Biofuel emissions are described by Yevich and Logan [2003].  Soil NOx emissions are based on 

Yienger and Levy [1995] as described in Wang et al. [1998]. We include a lightning NOx source 

of 7.1 TgN/yr [Hudman et al. this issue; Martin et al., this issue].  A more detailed description of 

the model as applied to ICARTT observations is given in Hudman et al. [this issue] and Turquety 

et al. [this issue].  



Page 7 

In addition to the standard full chemistry simulation, we conduct a tagged CO simulation  

[Bey et al., 2001b; Liu et al. 2003; Li et al., 2005] using archived monthly OH fields from the 

full chemistry simulation.  We transport a suite of six CO tracers to track emissions from 

individual source regions and types: Asian anthropogenic, Asian biomass burning, North 

American anthropogenic (combining both fossil fuel and biofuel emissions), North American 

biomass burning, European anthropogenic, and the rest of the world.  We use “Asian CO” to 

refer to CO emitted over East Asia (defined as the 66° - 146°E, 9°S - 90°N region), including 

both anthropogenic and biomass burning emissions.  The contribution of climatological Asian 

biomass burning emissions is small, accounting for 26% of Asian CO during summer.   

GEOS-Chem has been validated by numerous comparisons to observations, showing no 

model biases [Li et al., 2002, 2004; Heald et al., 2003; Fiore et al., 2002; Park et al., 2003; 

Duncan and Bey, 2004].  Of particular interest to our study, the model has been used to examine 

outflow of Asian pollution to the Pacific [Bey et al., 2001b; Liu et al., 2002, 2003; Palmer et al., 

2003] and trans-Pacific transport to North America [Heald et al., 2003, 2006; Jaeglé et al., 2003; 

Liang et al., 2004, 2005; Weiss-Penzias et al., 2004; Jaffe et al., 2004; Hudman et al., 2004; 

Bertschi et al., 2004; Park et al., 2004]. 

 Several studies use the GEOS-Chem model to interpret ICARTT observations. Hudman et al. 

[this issue] examine the North American nitrogen budget. Turquety et al. [this issue] constrain 

boreal forest fire emissions by combining the model together with MOPITT observations. Martin 

et al. [this issue] use the model to evaluate a new space-based NOx emissions inventory by 

comparison to ICARTT observations. Millet et al. [this issue] combine in situ and satellite 

measurements of HCHO to constrain the isoprene emissions in the model. 
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3. Airmass identification 

3.1 Biomass burning influence 

Several biomass burning plumes from Canadian and Alaskan fires were sampled during 

INTEX-A in the lower and middle troposphere.  We identify observations with CO > 170 ppbv 

or HCN > 560 pptv as biomass burning plumes.  We confirmed the validity of this method by 

examining results from the tagged CO simulation as well as back trajectories.  We find that 2% 

of the INTEX-A observations in the middle and upper troposphere (6-12 km) were influenced by 

emissions from boreal forest fires.  The biomass burning airmasses display large enhancements 

in many trace gases: CO, hydrocarbons (ethene, benzene, C2H2, methanol, toluene, ethanol, 

acetaldehyde, ethane), reactive nitrogen species (PAN, PNs), HCN, CH3CN, as well as smaller 

enhancements in CH3OOH, H2O2, and CH4 (Table 2).  These airmasses also display elevated 

concentrations of aerosols ionic species: sulfate (SO4
2-), nitrate (NO3

-), ammonium (NH4
+), as 

well as oxalate (C2O4
2-) and potassium (K+). Such enhancements in biomass burning plumes 

have been commonly observed in previous studies [e.g. Goode et al., 2000; Cofer et al., 1998; 

Singh et al, 2004; Bertschi et al., 2004; Dibb et al., 2003b].   

3.2 Principal component analysis 

For the remaining observations, we apply Principal Component Analysis (PCA) to 

objectively identify the origin of airmasses.  PCA is a mathematical technique that reduces the 

dimensions of a dataset based on covariance of variables, and has been applied to source 

identification in numerous air quality studies [e.g. Thurston and Spengler, 1985; Buhr et al., 

1995; Statheropoulos et al., 1998; Guo et al., 2004].  A typical approach is to extract preliminary 

factors using PCA and then obtain the final physically realizable structures through rotations of 

the preliminary factors.  For this work, we use the rotated principal component analysis (RPCA) 
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by Lin and Arakawa [2000], which uses Promax rotation with a revised manipulation to reduce 

the deficiency introduced by the linear Promax model and to improve the capability in 

recovering embedded structures of data. 

 We first construct our data matrix by using 9 observed chemical variables from a 1-min 

merged data set of observations obtained between 6 and 12 km altitude: O3, CFC-11, CFC-12, 

NOx (NO+NO2), the NOx/HNO3 ratio, H2O2, CO, HCN, and PAN.  Through a systematic 

correlation analysis for all observed species, we found that these 9 variables display the highest 

intercorrelations indicating they are good tracers for identification of airmass origin.  These 

variables are also chosen because they contain the least number of missing values.  We apply our 

analysis to 3633 1-min observations, 87% of the observations obtained between 6-12 km during 

INTEX-A. 

The PCA yields three leading Empirical Orthogonal Functions (EOF) representing distinct 

patterns.  The relative contribution of each EOF to an individual 1-min measurement point is 

contained in the corresponding principal component (PC) value.  We define a measurement point 

as being dominated by a specific EOF when its PC is greater than one standard deviation (1σ) 

and other PCs are < 1σ.  The EOF patterns are shown in Figure 1, while the chemical 

composition of each corresponding type of airmass is listed in Table 2.  Chemical species that 

are significantly enhanced (> mean+1σ) or depleted (< mean-1σ) compared to background levels 

are highlighted in bold in Table 2. 

Based on these EOFs, we segregated air sampled between 6-12 km during INTEX-A into 4 

major categories: (1) lower stratospheric air (7% of observations), (2) convection/lightning 

(13%), (3) Asian (7%), and (4) biomass burning (2%, from the correlation analysis, see section 
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3.1).  Airmasses not included in any of the above categories were classified as “background” air 

(71%) (Table 2). 

The first EOF represents air with enhanced O3 concentrations and is depleted in CFC-11 and 

CFC-12, consistent with a lower stratospheric influence (Figure 1).  We find that the 

stratospheric airmasses contain enhanced levels of HNO3 (677±340 pptv versus 245±210 pptv in 

background air), SO4
2- (100±36 pptv versus 60±42 pptv), 7Be (2994±1754 fCi/m3 versus 

497±675 fCi/m3), and low relative humidity (RH) (23.7±19.9 % versus 48.5±26.8 %), CH4 

(1757±34 ppbv versus 1791±16 ppbv), CFC-113 (75.8±1.7 pptv versus 78.4±0.6 pptv), H-1211 

(4.06±0.21 pptv versus 4.32±0.11 pptv) (Table 2).   

The second EOF contains enhanced NOx concentrations and NOx/HNO3 ratios, which are 

correlated with low concentrations of H2O2 (Figure 1), indicating fresh convection (HNO3 and 

H2O2 are scavenged because of their high solubility) accompanied by lightning (elevated NOx).  

This airmass type is characterized by elevated anthropogenic tracers, in particular SO2 (51±79 

pptv versus 33±45 pptv), ethane (977±510 pptv versus 715±268 pptv), propane (280±269 pptv 

versus 138±124 pptv), toluene (8±3 pptv versus 5±2 pptv), and C2H2 (95±36 pptv versus 80±31 

pptv) (Table 2). It also contains high levels of methanol and ethanol, which have biogenic land 

sources [Singh et al., 2000; Heikes et al., 2002].  It displays a higher NOx/HNO3 ratio (1.26±0.93 

v/v) compared to background air (0.38±0.32 v/v) as a result of recent ventilation of NOx from 

boundary layer by deep convection, as well as NOx formation in lightning.   

The third EOF is significantly enhanced in CO, HCN, and PAN without any NOx 

enhancements (Figure 1).  This EOF is consistent with aged transport plumes from East Asia, as 

we will see below by examining their chemical composition. The Asian origin for these plumes 
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is confirmed by independent analyses with the GEOS-Chem tagged simulation and back 

trajectories (section 4.1).  

The Asian airmasses are significantly enhanced in many trace gases associated with fossil 

fuel combustion, in particular CO (128±14 ppbv, 35% increase with respect to background), 

C2H2 (159±40 pptv, 99%), HCN (420±60 pptv, 47%), and benzene (24±11 pptv, 85%) (Table 2). 

Species with biogenic sources are also found to be enhanced in the Asian plumes: methanol 

(2.2±1.0 ppbv, 67%) and acetone (2±1 ppbv, 39%).  Enhanced mixing ratios of O3 (99±20 ppbv, 

36%) and PAN (592±159 pptv, 97%) in the Asian plumes, indicate efficient photochemistry.  

The Asian airmasses also display enhanced levels of aerosol species associated with 

anthropogenic emissions: SO4
2- (111±55 pptv, 85%) and NH4

+ (130±61 pptv, 86%).  In addition, 

levels of oxalate, C2O4
2- (15±7 pptv, 150%), which has been linked to biomass or biofuel burning 

[Dibb et al., 2003b] are also elevated.   

Al-Saadi et al. [this issue] presented a Lagrangian analysis of air influencing the U.S. during 

INTEX-A using 10-day back trajectories and found that of 9% of the entire U.S. domain between 

6-12 km during ICARTT was influenced by East Asian air, 12% by stratospheric air, and 13% by 

strong convection, consistent with our results.  

3.3 Trace gas relationships 

Figure 2 shows trace gas relationships for these 5 airmasses.  The airmasses with lower 

stratospheric influences show strong negative CO-O3 (r = -0.80, 99% significant) and CO-HNO3 

(r = -0.69, 99%) relationships, and a weaker positive O3-NOy relationship (r = 0.41, 99%).  The 

Convection/Lightning category displays positive correlation between anthropogenic pollutants, 

i.e. CO, C2H2, and PAN, a negative CO-HNO3 correlation (-0.44, 99%) and no significant 

correlation between CO and O3 (r = 0.18), indicating freshly ventilated pollution with scavenging 
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of HNO3 and little O3 production.  Biomass burning plumes contain highly correlated CO, PAN, 

HCN, C2H2, SO4
2- (r = 0.72 – 0.99, 99%) with weak negative CO-O3 and CO-HNO3 correlations 

(r = -0.44 and -0.42, respectively, 99%).   

The Asian airmasses show strong positive CO-PAN (r = 0.69, 99%) and CO-C2H2 (r = 0.78, 

99%) correlations, as commonly observed in anthropogenic transport plumes [e.g. Singh et al., 

1995].   While CO and HCN are significantly enhanced in the Asian airmasses (Table 2), these 

tracers are only weakly correlated (r = 0.41, 99%) with a slope of 0.87e-3 mol mol-1, half the 

value observed in the Chinese urban plumes during TRACE-P (1.67e-3 mol mol-1) [Li et al., 

2003].  This weak correlation and small HCN-CO enhancement ratio suggest mixing of domestic 

coal burning together with non-coal fossil fuel emissions [e.g. Singh et al., 2003; de Gouw et al., 

2003].     

We find that CO and NOy are moderately correlated (r=0.30, ∆NOy/∆CO=8±2 pptv/ppbv). 

CO and O3 are positively correlated (r = 0.53) with a ∆O3/∆CO ratio of 0.76 ± 0.04 mol mol-1.  

O3 and NOy are also positively correlated (r = 0.51, ∆O3/∆NOy =0.1±0.01 mol mol-1).  These 

positive correlations are indicative of efficient NOy export from Asia followed by active 

photochemical ozone production (section 4.3).  The Asian airmasses do not display consistent 

relationships between CO and HNO3, and CO and SO4
2- (rCO,HNO3 = 0.36, rCO,SO4= = -0.09), likely 

reflecting different chemical and wet scavenging histories for individual plumes.    

 

4. Asian Plumes  

We identify 5 major Asian plumes during INTEX-A: 1 July, 15 July, 20 July, 2 August, and 

14 August 2004.  Figure 3 (panel a) shows the location of these plumes, color coded by observed 
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CO levels. The plumes extend from the Northeastern (NE) Pacific to Northwestern (NW) 

Atlantic.   

4.1 Identification with other methods 

We verify the PCA Asian airmass identification by using the GEOS-Chem tagged Asian CO 

tracer sampled along the flight tracks. Because of the dispersion of Asian plumes as they cross 

the American continent [Li et al., 2006], we use a longitude-dependent threshold for Asian CO 

linearly decreasing from 30 ppbv at 125°W to 16 ppbv at 65°W.  We identify the same 5 Asian 

plumes and we find that 9% (330 minutes) of observations were influenced by Asian emissions 

(compared to 7% from PCA).  The broad picture of geographic distribution of the Asian plumes 

agrees well between PCA and GEOS-Chem (Figure 3, panels a and b).  There are differences in 

the detailed location of the plumes, likely from transport errors resulting from coarse model 

resolution and numerical diffusion in the model.  If we allow an overlap time window of ±10 

minutes along the flight tracks (~ 70 km horizontal displacement) to account for transport error, 

we find that 85% of the Asian plumes identified by PCA overlap with those identified by GEOS-

Chem.  The overlap increases to 95% when the time window is increased to ±30 minutes.   

We further verify our PCA results with 10-day kinematic back trajectories calculated with 

the Florida State University (FSU) kinematic model [Fuelberg et al., 2003] using reanalysis data 

from the National Weather Service’s Global Forecast System (GFS).  The reanalysis data were 

available 4 times daily, with 26 vertical levels and a horizontal resolution of T254, which was 

interpolated to a 0.5°x0.5° horizontal grid [Fuelberg et al., this issue]. The trajectories were 

calculated for each minute along the flight tracks.  Measurements with back trajectories that 

overpass the heavily polluted region in East Asia (90-140°E, 20-55°N) within 10 days are 

identified as Asian plumes.  This method yields a very similar geographical distribution of Asian 
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plumes (Figure 3, panel c) compared to the PCA and GEOS-Chem methods.   It identifies 11% 

(403 minutes) of the observations as Asian plumes. We find that 95% of the Asian plumes 

identified by the PCA overlap with those identified using back trajectories within ±10 minutes, 

and the overlap increases to 99% within ±20 minutes.   

Both GEOS-Chem and back trajectories identify more observations with Asian influence 

(9% and 11% of observations, respectively) compared to the observation-based PCA (7%). With 

the coarse vertical resolution (~1 km) of the meteorological fields used in these analyses it is not 

possible to accurately represent the thin layers (~few hundred meters) of pollution plumes 

crossing the Pacific [e.g. Brock et al., 2004; de Gouw et al., 2004].  Instead both the model and 

back trajectories are spreading the Asian plumes over thicker layers, and thus overestimate their 

vertical extent and their overall influence.  

4.2  Transport mechanisms 

Fuelberg et al. [this issue] compared the mean meteorological conditions during INTEX-A to 

the mean climatology for the 2000 – 2004 summers and found a stronger than normal Alaskan 

ridge.  This configuration favors long-range transport across the Pacific [Liang et al., 2005].  The 

300 hPa winds during 2004 were not significantly different from climatology.     

We identify the transport mechanisms of the Asian plumes in two steps.  We first determine 

transport time by tracking Asian plumes from the sampling location back to Asia using the 

GEOS-Chem tagged CO simulation.  The transport time is verified using the FSU back-

trajectories. In a second step we examine export mechanisms using the GEOS-4 convective 

diagnostics, sea level pressure fields and detailed synoptic charts with frontal and typhoon 

positions from the NCEP weather maps at the National Climatic Data Center 

(http://www.ncdc.noaa.gov/oa/ncdc.html).   
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The transport characteristics of the 5 major Asian plumes observed during INTEX-A are 

summarized in Table 4.  The plumes have varying transit times across the Pacific (3-9 days) and 

transport altitudes (6 to 11.5 km).  The shortest transport times correspond to the two strongest 

plumes observed during INTEX-A: 3-5 days from Asia to the NE Pacific for the 1 July event and 

5-9 days from Asia to the U.S. East Coast for the 2 August event.   

The export mechanisms of these Asian plumes are lifting in warm conveyor belts (WCB) of 

mid-latitude cyclones (1 July, 15 July, 20 July, and 14 August) and deep convection (1 July and 

2 August).  During August, which marks the beginning of the typhoon season for East Asia, we 

find that lifting in typhoons also plays an important role in the export two Asian plumes (2 and 

14 August). The role of typhoons in inducing rapid lofting of surface pollution in the upper 

troposphere was observed during PEM-West A [Newell et al., 1996; Blake et al., 1996] and 

discussed by Liang et al. [2004].   

4.3 Chemical composition: Comparison to previous campaigns 

Table 3 compares the chemical composition of the Asian airmasses sampled during INTEX-

A with four springtime measurement campaigns: PEM–West B (February – March 1994) [Hoell 

et al., 1997], TRACE-P (February – April 2001) [Jacob et al., 2003], ITCT 2K2 (April – May 

2002) [Parrish et al., 2004], and PHOBEA (Springs 1997-2002) [Jaffe et al., 2001].  The 

summertime Asian plumes observed during INTEX-A display a distinct chemical signature 

compared to these springtime measurements.  They contain systematically lower levels of 

anthropogenic tracers (CO, ethane, propane, C2H2, and benzene: 128±14 pptv, 882±193 pptv, 

159±40 pptv, 24±11 pptv) compared to springtime Asian outflow (134-198 pptv, 1243-1600 pptv, 

264-319 pptv, 54-100 pptv) consistent with a shorter lifetime of these tracers during summer. 

Methanol and acetone levels (2.2±1.0 ppbv and 2±1 ppbv, respectively) are higher than during 
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spring (0.72-1.8 ppbv and 0.57-1.4 ppbv, respectively). Both tracers have strong biogenic source 

during summer [Singh et al., 1994; 2000; Heikes et al., 2002].  In their global simulation, Jacob 

et al. [2005] found a late spring-summer maximum in methanol surface concentrations (> 5-10 

ppbv) over mid-latitudes. Surface concentrations were particularly elevated North of 35°N over 

Asia in July due to the late emergence of leaves and the long continental fetch. INTEX-A 

observations of elevated methanol in Asian plumes are thus consistent with mixing of large 

biogenic emissions in the anthropogenic outflow.  

The INTEX-A Asian plumes contain levels of reactive nitrogen species significantly higher 

than previously observed (Table 3): PAN (592±159 pptv compared to 210-360 pptv for 

springtime campaigns), HNO3 (363±304 pptv compared to 70-234 pptv), and NOx (289±201 

pptv compared to 48-90 pptv). Overall, the mixing ratios of NOy (1330±458 pptv) are a factor of 

2 larger than observed during these previous campaigns (528-640 pptv). We examine below four 

possible causes for these high NOy levels during summer relative to spring: more efficient NOy 

export efficiency, higher surface NOx emissions, recent mixing with NOx from local 

convection/lightning over the U.S., influence of lightning over East Asia.  

In their modeling study over N. America, Liang et al. [1998] found little seasonality in the 

NOy export efficiency from the polluted boundary layer, with similar export efficiencies during 

summer and spring (25%). If we can extrapolate these results to East Asia, it seems that 

variability in NOy export efficiency is unlikely. Based on satellite observations, Chinese 

emissions appear to have a wintertime maximum and summer minimum [Jaeglé et al., 2005; 

Richter et al., 2005; Martin et al., this issue]. The higher NOx mixing ratios during INTEX-A 

could be due in part to mixing with high background NOx over North America influenced by 

local lightning [Hudman et al., this issue; Martin et al., this issue; Cohen et al., this issue].  Table 
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2 shows that NOx levels in the Asian plumes (289 pptv) are similar to background air (285 pptv).  

However, when we restrict our analysis to plumes sampled over the NE Pacific on July 1 during 

INTEX-A, we still find relatively high levels of NOx (145 pptv, Table 4, see section 4.4). In 

addition, the low NOx/HNO3 in Asian airmasses (0.3 mol/mol) indicates aged plumes compared 

to those influenced by local convection/lightning (1.26 mol/mol). Lightning is expected to be 

more frequent during summer.  The generally strong correlation in the Asian plumes between 

CO and PAN (r=0.69) but a much weaker correlation between CO and NOy (r=0.30) suggest that 

export of anthropogenic NOy, mostly in the form of PAN [Bey et al., 2001b; Li et al., 2006], has 

been mixed with fresh NOx emissions from lightning either over Asia or over the western Pacific.  

Despite the difference in total reactive nitrogen, we find a similar partitioning among NOy 

species, with PAN being the dominant reactive nitrogen species, accounting for 44% of NOy 

during INTEX-A, compared to 40% for PEM-West B, 45% for TRACE-P, and 56% for 

ITCT2K2.   

Aerosol ionic concentrations of SO4
2-, NO3

-, and NH4
+ in the Asian plumes observed during 

INTEX-A are similar as those observed during TRACE-P and ITCT2K2.  Springtime 

measurements obtained during TRACE-P and ITCT2K2 display higher levels of Ca2+ (118 pptv 

and 73 pptv, respectively) than those observed during summer 2004 (31 pptv). Elevated Ca2+ 

concentrations are characteristic of dust emissions [Dibb et al., 2003b; Kline et al., 2004], which 

maximize in spring over East Asia [e.g. Merrill et al., 1989; Husar et al., 2001].  ITCT2K2 

observations show high levels of K+ (75 pptv, compared to 21 pptv during INTEX-A) as well as 

CH3CN (310 pptv, compared to 158 pptv during INTEX-A), due to long-range transport of 

biomass burning emissions from SE Asia, which also maximize in spring [Nowak et al., 2004; de 

Gouw et al., 2004; Brock et al., 2004].   
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The observed ∆O3/∆CO ratio in the Asian plumes during INTEX-A (0.76 ± 0.04 mol mol-1) 

is higher than the values observed in Asian plumes over the NE Pacific during spring: 

∆O3/∆CO=0.37 mol mol-1 for PHOBEA [Price et al., 2004] and ∆O3/∆CO=0.10 mol mol-1 for 

ITCT2K2 [Nowak et al., 2004]. Ozone production in the upper troposphere over East Asia 

reaches its maximum during summer because of rapid vertical transport of ozone precursors [Liu 

et al., 2002].  Similar ∆O3/∆CO enhancements ratios (>0.7 mol mol-1) were reported in the upper 

troposphere downwind of Asia for July using CO and O3 from the Tropospheric Emission 

Spectrometer (TES) instrument [Zhang et al., 2006]. Mauzerall et al. [2000] found a near 

doubling in net ozone production over East Asia during summer compared to spring.   

In addition, some Asian plumes observed during INTEX-A exhibit mixing with stratospheric 

air (see section 4.4), further enhancing O3 levels.  During summer at mid-latitudes, stratosphere-

troposphere exchange occurs mostly along isentropic surfaces that intersect the tropopause [Scott 

and Cammmas, 2002; Jing et al., 2004].  The transport of Asian pollution in the upper 

troposphere over the Pacific is thus subject to mixing with lower stratospheric air.   

4.4 Variability in individual plumes and case studies 

Individual Asian plumes all have in common enhancements in CO, PAN, HCN, C2H2, and 

methanol but they display varying levels of O3, HNO3, and H2O2, as well as aerosol 

concentrations of SO4
2-, NO3

-, and NH4
+ (Table 4). Below we contrast the two strongest Asian 

plumes observed on the 1 July and 2 August 2004 flights. 

The 1 July 2004 Asian long-range transport event is remarkable because of its very short 

transport time of 3-5 days, which is faster than many trans-pacific transport events during spring 

[Jaffe et al., 2003].  Both the GEOS-Chem Asian CO tracer (Figure 4) and the kinematic back 

trajectories (Figure 5) indicate that this episode is the result of two separate transport plumes: 
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plume A with a 3-day transpacific transport time and plume B with a 5 day transport time.  

Plume A was injected into the mid-latitude jet in the upper troposphere through deep convection 

embedded in a mid-latitude cyclone over NE China on 28 June 2004.  Plume B was exported in 

the WCB of a mid-latitude cyclone on 26 June.  Note the rapid vertical transport associated with 

WCB on Figure 5. The upper level geostrophic flow was unusually zonal in the days following 

injection, favoring very rapid advection across the Pacific with a mean wind speed of 21 m/s and 

peak winds of 54 m/s (compared to the monthly average of 13 m/s). Both plumes arrived over 

the NE Pacific on 1 July where they were sampled by the DC-8 aircraft (Figure 4): plume B was 

intercepted three times (at 36°N, 41°N and 45°N), while plume A was intercepted further south 

(at 35°N).   

Figure 6 shows observed and modeled curtain plots of O3 along the flight track for 1 July.  

Figure 7 shows observed vertical profiles of CO, O3, SO4
2-, HCN and PAN for the same flight. 

While all five tracers are enhanced in plume B, O3 and SO4
2- show lower levels and sometimes 

no enhancement in plume A. This is consistent with the difference in transport time and the more 

northerly transport of plume A relative to plume B (Figure 5), which would result in less 

photochemical processing and thus less efficient production of O3 and SO4
2- for plume A.  

Indeed, in Plume A CO and O3 are weakly correlated (r = 0.20) with a low O3-CO slope of 0.17 

mol mol-1.  CO and O3 in plume B display a stronger positive correlation (r = 0.51) with a high 

O3-CO slope of 1.12 mol mol-1 (Figure 7c), representing efficient photochemical production of 

O3.  In addition Table 4 shows that plume B has a lower NOx/HNO3 ratio (0.8) compared to 

plume A (1.2) also consistent with an older plume with more photochemical processing of NOx 

to form HNO3 [Jaeglé et al., 1998]. 
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The 2 August Asian plume was observed over the Gulf of Maine and was the result of 

intermixing of two Asian plumes.  Figure 8 shows the evolution of the plume as observed by 

MOPITT and modeled by GEOS-Chem. The first plume (plume C) was lifted into the upper 

troposphere in deep convection over NE China on 24 July 2004 (Figure 8c and 9) and the second 

plume (plume D) was exported by vigorous lifting in a typhoon to the east of Japan on 28 July 

2004 (Figure 8ef and 9).  MOPITT CO on 28 July locates plume C in central North Pacific and 

the edge of Plume D to the east of Japan (Figure 8d).  The two plumes merged and advected 

eastward across the Pacific following the large-scale flow and arrived on the U.S. West Coast on 

July 31 (Figure 8g-i). The plume was then rapidly transported behind the surface cold front of a 

mid-latitude cyclone traveling from central Canada to the North Atlantic (Figure 8il).  Biomass 

burning emissions from Alaskan and Canadian fires traveled below the Asian pollution, at 1-4 

km, behind the cold front. Enhanced CO levels from these fires can be seen extending from 

Alaska through Central Canada on both the MOPITT observations and GEOS-Chem simulation 

on 26, 28 and 31 July (Figure 8).  Part of the MOPITT CO column enhancements over the flight 

track region is due to the transport of these boreal forest fire emissions.  

The vertical profiles for the 2 August flight indicate layered influences, as shown on Figure 

10. A local pollution layer with moderately high CO mixing ratios was sampled in the boundary 

layer (0-2 km), extending from New England into the Atlantic. At 2-4 km altitude, co-located 

CO (> 150 ppbv) and HCN (> 400 ppbv) enhancements indicate the sampling of the biomass 

burning plume.  Finally, in the upper troposphere (8-11 km) the plume with Asian pollution 

contained elevated CO (100-150 ppbv) , O3 (60-14  0 ppbv),  HCN (320-580 pptv), HNO3 (up to 

1.2 ppbv) and PAN (350-750 pptv). This plume was next to a stratospheric intrusion with high 

O3, HNO3, and low CO.  
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The chemical characteristics of the two Asian subplumes (C and D) are similar, probably due 

to the long transport time and sufficient intermixing, we thus do not separate them.  The Asian 

plume of 2 August contained more NOy (~1590 pptv) compared to the 1 July plume (~880 pptv), 

consistent with the higher CO levels sampled (Table 4).  In this plume the NOx/HNO3 ratio is 

much lower (0.4) compared to the 1 July plumes (1.2 and 0.8), and can be explained by the 

longer transport time, and thus more conversion of NOx to HNO3 in the upper troposphere.   

The difference in NOx levels explains the contrasting levels of H2O2 and HNO4 between the 

two plumes: 1 July contained high H2O2 (~1050 pptv) and low HNO4 (~64 pptv), while 2 August 

displayed low H2O2 levels (385 pptv) with high HNO4 (118 pptv).  This indicates a shift from a 

NOx-limited regime where the main loss of HOx is via HO2+HO2 forming H2O2 (1 July), to 

transition regime with higher NOx levels (2 August), where HO2+NO2  HNO4 competes with 

the formation of H2O2 [Jaeglé et al., 2001; Kim et al., this issue].   

CO and O3 were highly correlated (r = 0.75) in the 2 August Asian plume with a ∆O3/∆CO 

ratio of 0.98 mol mol-1 (Figure 10b).  The high ozone production rate is driven by long transport 

time, active photochemistry and abundant NOx.     

4.5 Comparison to GEOS-Chem 

Simulated concentrations for each airmass type are indicated in parenthesis in Table 2. The 

model captures reasonably well background levels of O3, CO, NOx, PAN, H2O2, HCHO, C2H6, 

and C3H8, with an overestimate of HNO3 mixing ratios and underestimate of acetone levels.  

This is further discussed in Hudman et al. [this issue].  

Here, we focus on the model’s ability to capture the composition of the Asian plumes.  While 

the model captures well the location and timing of the plumes (section 4.1), it underestimates the 

magnitude of the observed enhancements of O3 and CO by a factor of 3. Relative to background 
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levels the mean observed (modeled) enhancements in Asian airmasses are 26 ppbv (8 ppbv) for 

O3 and 33 ppbv (11 ppbv) for CO (Table 2).  This is also true for individual plumes (see Table 4).  

In addition, while the observations show a doubling of PAN levels in Asian plumes relative to 

background, the model shows lower levels of PAN relative to background (Tables 2 and 4).  The 

model also underestimates the observed levels of NOx in the plumes by a factor of two.   

The model’s inability to capture the magnitude of observed strong transpacific plumes has 

been noted previously by Heald et al. [2003] and Hudman et al. [2004] and was attributed to 

numerical diffusion in the model.  The combined large underestimate of NOx and PAN that we 

observe during INTEX-A could be due to a number of additional issues: underestimate of NOy 

export from Asia, underestimate of surface NOx emissions over Asia, and/or and underestimate 

of lighting over Asia. We examine each of these in turn. Poor representation of the subgrid-scale 

processes (such as deep convection) could lead to an underestimate of export from Asia.  Figure 

8 shows that the model significantly underestimates the magnitude of the enhancements observed 

with MOPITT CO, in particular in the plume associated with export in the typhoon. Using 

observations from the Global Ozone Monitoring Experiment (GOME), Richter et al. [2005] 

showed that NO2 columns have increased by 40% over the 1996-2002 period, likely due to 

growing industrialization and increasing energy consumption.  More recently, Martin et al. [this 

issue] derived a new space-based NOx emissions inventory using SCIAMACHY observations, 

finding that East Asian emissions in 2004 were 68% larger than the regional bottom-up inventory 

of Streets et al. [2003] for 2000.  Wang et al. [2003] proposed decomposition of organic wastes 

and extensive application of chemical fertilizers as a large source of NOx over Asia. This was 

confirmed by Jaeglé et al. [2005] who found that emissions from soils over Asia account for 

almost as much NOx as emissions from anthropogenic combustion sources during summer.  
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Similar to our systematic model underestimate of Asian influence in the UT, Wang et al. 

[2006] found that global and regional models were not able to capture the late-spring increase in 

NOx, PAN, CO, and O3 observed over North America. They attributed this to a poor 

representation of convection and lightning over East Asia. It appears that the poor performance 

of models in capturing the magnitude of transpacific transport enhancements persists though 

summer.  

 

5. Summary 

Several Asian plumes were observed over North America during the NASA INTEX-A 

aircraft mission during July-August 2004.  We applied correlation analysis and Principal 

Component Analysis (PCA) to the aircraft observations obtained between 6-12 km during 

INTEX-A to identify Asian plumes in the observations and to examine their composition and 

origin.   

We found distinct influences from Asia (7% of observations), the lower stratosphere (7%), 

convection and lightning (13%), and boreal forest fires (2%). The remaining 71% are assigned to 

background.  The Asian airmasses are significantly enhanced in CO, O3, PAN, HCN, C2H2, 

benzene, and SO4
2-, consistent with the dominant influence of combustion emissions over East 

Asia. In addition, high levels of methanol and acetone indicate that biogenic emissions combine 

with the polluted outflow.   

Our observations-based PCA method identifies five major Asian pollution plumes during 

INTEX-A.  The Asian origin of these plumes is confirmed with results from the GEOS-Chem 

global model of tropospheric chemistry as well as back trajectories.  The three main summertime 

trans-Pacific transport mechanisms are export of Asian pollution in the warm conveyor belts of 
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the mid-latitude cyclones, deep convection, and lifting in typhoons followed by advection in the 

middle and upper troposphere for 3-9 days. Individual Asian plumes have some common 

characteristics (elevated CO, PAN, HCN, C2H2, and methanol), but differ in the amounts of O3, 

HNO3, and SO4
2- present. We explain the differences in terms of a range of chemical processing 

time and aging of the polluted airmasses with conversion of NOx to HNO3 accompanied by 

efficient O3 production. 

We contrast the composition of these summertime Asian plumes to observations obtained 

during spring: PEM-West B, PHOBEA, TRACE-P, and ITCT2K2. INTEX-A plumes contain 

lower levels of anthropogenic pollutants because of their shorter lifetime during summer. They 

display higher levels of biogenic tracers, indicating a more active biosphere. Finally, the Asian 

plumes observed during INTEX-A contain higher levels of reactive nitrogen species and O3, 

likely the result of active photochemistry fueled by higher NOx export from the Asian boundary 

layer.  Additional summertime injection of lightning NOx over East Asia or the western Pacific 

might have further enhanced reactive nitrogen levels in the upper troposphere.  Stratosphere-

troposphere exchange along isentropes accounts for part of the observed O3 enhancements. 

Although the GEOS-Chem model captures the timing and location of the observed Asian 

plumes, it underestimates the magnitude of enhancements of CO and O3 by a factor of 3. In 

addition, the model does not show any enhancements in PAN (observations show a doubling 

relative to background levels) and significantly underestimates NOx levels in the plumes. While 

some of these underestimates are likely due to transport problems (numerical diffusion and poor 

representation of subgridscale features such as deep convection), it is also likely that the model 

underestimates surface NOx emissions over Asia and/or lightning emissions over Asia.    
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Figure captions. 
 
Figure 1. Structure of the 3 leading Empirical Orthogonal Functions (EOF) identified by 
Principal Component Analysis applied to observations between 6 -12 km.  
 
Figure 2. Scatter diagram of observed (a) 10-sec CO and O3, (b) 75-sec CO and PAN, and (c) 
6.5-sec CO and HNO3, (d) 2-min CO and SO4

2-, (e) 10-sec CO and HCN, (f) 1-min CO and 
acetylene, (g) 1-min O3 and NOy (NOy = NO + NO2 + PAN + HNO3 + HNO4), (h) 1-min CO and 
NOy within different airmasses between 6-12 km during INTEX-A.  Biomass burning plumes 
that have CO > 200 ppbv are not shown here. 
 
Figure 3. Flight tracks of the NASA DC-8 aircraft during INTEX-A (July 1 – August 14, 2004).  
Filled circles indicate locations of Asian plumes identified using (a) Principal Component 
Analysis, (b) the GEOS-Chem Asian CO tracer, and (c) FSU back trajectories, size-scaled and 
color-scaled according to the observed CO levels.  
 
Figure 4.  G GEOS-Chem Asian CO tracer for the INTEX-A flight on 1 July, 2004.  Panel a): 
Asian CO at 369 hPa (8.8 km ) with the DC-8 flight track marked by the write thick line.  
Locations where plume A and B were sampled were highlighted in red and blue, respectively.  
Panel b): Curtain plot of Asian CO along the flight track.  The black circles with letter “A” and 
“B” indicate plumes A and B, respectively.  
 
Figure 5.  Kinematic back trajectories for the 1 July 2004 Asian plume: 3 day back trajectories 
for plume A are shown in red and 5 day back-trajectories for plume B are shown in blue.  The 
thick black line indicates the flight track. 
 
Figure 6.  Curtain plots of (a) observed in situ O3, (b) DIAL O3, and (c) model O3

  along the 1 
July 2004 flight track.  The black circles with letter “A” and “B” indicate plumes A and B, 
respectively.  
 
Figure 7. Vertical profiles of observed CO, O3, HCN, PAN, and fine sulfate aerosols during the 
1 July 2004 flight are shown in panels a-b and d-f. Thick gray lines are the mean observed 
vertical profiles in background air.  Scatter plot of CO versus O3 is in panel c. The two Asian 
sub-plumes are highlighted in color: plume A in blue and plume B in red.   
 
Figure 8.  MOPITT CO at 350 hPa (left panels), GEOS-Chem CO (with MOPITT kernel applied) 
at 350 hPa (middle panels), and GEOS-Chem Asian CO (right panels) at 369 hPa for 26 July, 28 
July, 31 July, and 2 August 2004.  MOPITT CO is regridded to the model resolution for 
comparison. Sea level pressure (contours) are also overplotted on the model CO. The white thick 
line on panel (j) indicates the flight track.  The circles and letter “C” and “D” indicates the 
location of subplumes C and D, respectively.  
 
Figure 9.  8 day back trajectories for the 2 August Asian plume. The thick black line indicates 
the flight track. 
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Figure 10. Observed vertical profile of CO, O3, HCN, and HNO3 between 14 – 16.4 UTC during 
the 2 August 2004 flight are shown in panels a and c - e.  Note the change in the scale of x-axis 
in panel c from 0-150 ppbv to 150-400 ppbv.  Thick gray lines are the mean observed vertical 
profiles in background air. Scatter plot of CO versus O3 is in panel b. The Asian plume is 
highlighted in blue.   
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Table 1. Summary of in situ observations. 
 

Species Instrument & Methods Reference 

CO, CH4 Diode laser spectrometer Bartlett et al. [2003] 

O3 Nitric oxide chemiluminescence Avery et al. [this issue] 

HNO3 

 

 

i) Chemical Ionization Mass Spectrometer (CIMS) 
ii) Sample collected by mist chamber and later analyzed by ion 
chromatography 

i) Crounse et al. [this issue] 
ii) Dibb et al. [2003a] 
 

PAN Automated dual gas chromatography with cryofocusing Singh et al. [2004] 

NO Chemiluminescence analyzer Brune et al. [this issue] 

OH, HO2  Laser induced fluorescence Brune et al. [this issue] 

NO2, PNs Laser induced fluorescence Cohen et al. [2000] 

H2O2 
 
 
 

i) CMIS 
ii) Aqueous collection followed by high pressure liquid 
chromatography (HPLC) separation and enzyme fluorescence 
detection 

i) Crounse et al. [this issue] 
ii) Heikes et al. [1996] 
 
 

CH3OOH 
 
 

Aqueous collection followed by high pressure liquid 
chromatography (HPLC) separation and enzyme fluorescence 
detection 

Heikes et al. [1996] 
 
 

HNO4, SO2 CIMS Huey et al. [2004] 

HCHO tunable diode laser absorption spectroscopic (TDLAS) Fried et al. [2003] 

Acetone, acetyldehyde Photo ionization detector Singh et al. [2004] 

Methanol, ethanol, 
CH3CN, HCN 

Reduction gas detector 
 

Singh et al. [2004] 
 

Ethane, ethane, acetylene, 
propane benzene, toluene, 
CFC-11, CFC-12, CFC-
113, H-1211 

Sample analyzed with gas chromatography/mass spectrometry 
(GC/MS) 
 
 

Blake et al. [2003] 
 
 
 

Condensation Nuclei TSI Condensation Particle Counter Clarke et al. [2002] 
7Be 
 

Sample collected by Teflon filters and analyzed using gamma-
spectroscopy and alpha-spectroscopy 

Dibb et al. [2003b] 
 

NO3
-, SO4

2-, C2O4
2-, NH4+, 

Na+, K+, Mg2+, Ca2+ 
Sample collected by Teflon filters and later extracted into 
deionized water with ion chromatography analysis performed. 

Dibb et al. [2003b] 
 

Fine sulfate aerosols 
 

Sample collected by mist chamber and analyzed by ion 
chromatography. 

Dibb et al. [2003b] 
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Table 2. Observed chemical composition of airmasses sampled at 6-12 km.  
 

 
Background 

 

EOF 1 
Lower  

Stratosphere 

EOF 2 
Convection & 

Lightning 

EOF 3 
Asian 

 
Biomass 
Burning 

Number of 1-min measurements 2580 243 482 255 73 
O3, ppbv 73 ± 17 (75) 212 ± 85 (92) 78 ± 20 (80) 99 ± 20 (83) 74 ± 19 (68) 
CO, ppbv 95 ± 15 (94) 80 ± 23 (92) 103 ± 18 (92) 128 ±  14 (106) 255 ± 154 (130) 
H2O, ppmv 719 ± 880 89 ± 101 231 ± 181 527 ± 428 419 ± 345 
Relative humidity, % 48.5 ± 26.8 23.7 ± 19.9 60.2 ± 23.9 52.0 ± 25.3 33.6 ± 11.5 
NOx

a, pptv 285 ± 223 (210) 327 ± 177 (140) 1041 ± 603 (437) 289 ± 201 (130) 227 ± 158 (67) 
PAN, pptv 301 ± 163 (296) 279 ± 152 (183) 398 ± 216 (262) 592 ± 159 (275) 1033 ± 653 (281) 
ΣPNsb, pptv 295 ± 193 338 ± 219 394 ± 289 491 ± 194 1188 ± 840 
HNO3, pptv 245 ± 210 (416) 677 ± 340 (294) 209 ± 175 (435) 363 ± 304 (279) 367 ± 234 (128) 
HNO4, pptv 53 ± 34 83 ± 33 65 ± 33 86 ± 44 86 ± 40 
NOy

c, pptv 884 ± 436 (963) 1366 ± 359 (624) 1713 ± 867 (1019) 1330 ± 458 (527) 1713 ± 827 (476) 
NOx/HNO3 (pptv/pptv) 0.38 ± 0.32 0.26 ± 0.21 1.26 ± 0.93 0.30 ± 0.24 0.29 ± 0.34 
SO2, pptv 33 ± 45 (17) 33 ± 27 (27) 51 ± 79 (15) 38 ± 25 (18)  22 ± 11 (30) 
HCN, pptv 285 ± 67 314 ± 86 301 ± 77 420 ± 60 1085 ± 854 
CH3CN, ppptv 147 ± 23 149 ± 29 145 ± 23 159 ± 30 553 ± 396 
CH3OOH, pptv 215 ± 149 97 ± 44 196 ± 182 160 ±  103 514 ± 437 
H2O2, pptv 505 ± 431 (480) 115 ± 106 (218) 158 ± 125 (255) 577 ± 420 (468) 969 ± 675 (808) 
HCHO, pptv 237 ± 314 (179) 232 ± 411 (78) 253 ± 225 (206) 180 ± 188 (134) 423 ± 373 (105) 
OH, pptv 0.29 ± 0.14 (0.62) 0.35 ± 0.10 (0.36) 0.47 ± 0.17 (0.80) 0.26 ± 0.08 (0.43) 0.18 ± 0.10 (0.21) 
HO2, pptv 9.08 ± 3.56 (12.5) 5.68 ± 1.48 (7.5) 6.81 ± 2.46 (6.7) 9.54 ± 3.00 (10.7) 13.09 ± 3.98 (10.5) 
Ethane (C2H6), pptv 715 ± 268 (637) 537 ± 196 (719) 977 ± 510 (628) 882 ± 193 (844) 1296 ± 1034 (832) 
Ethene (C2H4), pptv 3 ± 7 2 ± 3 6 ± 7 7 ± 34 346 ± 780 
Acetylene (C2H2), pptv 80 ± 31 77 ± 38 95 ± 36 159 ± 40 345 ± 440 
Propane (C3H8), pptv 138 ± 124 (114) 75 ± 50 (101) 280 ± 269 (116) 149 ± 99 (145) 251 ±253 (89) 
Benzene (C6H6), pptv 13 ± 7 9 ± 5 14 ±  10 24 ± 11 130 ± 263 
Toluene (C6H5CH3), pptv 5 ± 2 NA e 8 ± 3 5 ± 2 53 ± 16 
Acetaldehyde (CH3CHO), pptv 103 ± 68 118 ± 55 105 ± 78 110 ± 50 306 ± 331 
Acetone (C3H6O), ppbv 1.46 ± 0.85 (0.88) 1.04 ± 0.69 (0.60) 1.61 ± 0.75 (0.86) 2.03 ± 0.91 (0.83) 2.03 ± 0.87 (0.85) 
Methanol (CH3OH), ppbv 1.32 ± 0.75 0.85 ± 0.74 2.01 ± 1.14 2.21 ± 1.02 5.55 ± 2.14 
Ethanol (C2H5OH), pptv 96 ± 74 75 ± 71 164 ± 110 156 ± 106 322 ± 161 
CO2, ppmv 375.2 ± 2.2 374.3 ± 2.2 374.3 ± 3.3 373.0 ± 2.2 373.5 ± 1.9 
CH4, ppbv 1791 ± 16 1757 ± 34 1794 ± 20 1815 ± 13 1819 ±  24 
CFC-12, pptv 538 ± 3 526 ± 9 538 ± 3 538 ± 3 538 ± 4 
CFC-11, pptv 254 ± 2 243 ± 7 254 ± 2 254 ± 2 252 ± 2 
CFC-113, pptv 78.4 ± 0.6 75.8 ± 1.7 78.5 ± 0.8 78.4 ± 0.5 78.5 ± 0.5 
H-1211, pptv 4.32 ± 0.11 4.06 ± 0.21 4.36 ± 0.10 4.34 ± 0.09 4.31 ± 0.08 
7Be, fCi/m3 497 ± 675 2994± 1754 365 ± 511 764 ± 776 635 ± 548 
NO3

-, pptv 27 ± 52 21 ± 15 25 ± 28 41 ± 40 501 ± 592 
SO4

2-, pptv 60 ± 42 (50) 100 ± 36 (72) 65 ± 48 (40) 111 ± 55 (81) 285 ± 261 (87) 
C2O4

2-, pptv 6 ± 5 8 ± 4 6 ± 4 15 ± 7 114 ± 131 
NH4

+, pptv 70 ± 59 (121) 97 ± 65 (170) 64 ± 49 (101) 130 ± 61 (230) 1270 ± 1430 (324) 
Na+, pptv 105 ± 175 92 ± 105 82 ± 76 130 ± 340 97 ± 99 
K+, pptv 30 ± 44 34 ± 67 25 ± 26 21 ± 20 166 ± 164 
Mg2+, pptv 7 ± 9 5 ± 6 5 ± 5 11 ± 16 10 ±14 
Ca2+, pptv 22 ± 33 15 ± 16 26 ± 35 31 ± 46 21 ± 33 
Fine sulfate aerosols, pptv 77 ± 112 73 ± 57 47 ± 44 87 ± 69 165 ± 111 
Modeled Asian CO, ppbv 14 ± 7 18 ± 5 14 ± 6 23 ± 6 19 ± 2 
Modeled NABB CO d, ppbv 3 ± 2 3 ± 2 2 ± 2 4 ± 3 28 ± 29 
For each type of airmass we indicate the observed mean ± standard deviation (σ).  The mean model results sampled along the flight track are given in parenthesis.  
Chemical species that are significantly enhanced (> mean + 1σ) or depleted (< mean - 1σ) with respect to background are highlighted in bold.  
a  Nitrogen oxides, NOx = observed NO2 + observed NO.  
b Measurements of total peroxynitrates, ΣPNs≡N2O5+HNO4+PAN+PPN+other organic peroxynitrates. 
c We define total reactive nitrogen, NOy, as the sum of observed NO+NO2+PAN+HNO3+HNO4. 
d Modeled North American Biomass Burning (NABB) CO. 
e NA: Not Available. 
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Table 3. Observed chemical composition of Asian plumes: Comparison between INTEX-A and 
other campaigns.  
 
 INTEX-A PEM-West B a TRACE-P a ITCT2K2 PHOBEA 
Reference  This work 

 
Hoell et al. [1997] Jacob et al. [2003]  Nowak et al. [2004] b 

Brock et al. [2004] c 
Kotchenruther et al. [2001]d

Price et al. [2004] e 
Location  North America 

 
NW Pacific  

(25-50°N; 120 - 150°E)
NW Pacific  

(25-50°N; 120 - 150°E)
NE Pacific 

(30-45°N; 115 - 130°W) 
NE Pacific  

(47-49°N; 122 - 126°W) 
Altitude 6-12 km 5-10 km 5-10 km 2-8 km 0-8 km 
Time Period July–August  

2004 
February-March 1994 February-April 

 2001 
April –May  

2002 
Spring  

1997-2002 
O3, ppbv 99 ± 20 56 ± 30 60 ± 25 73 ± 10b 44 – 79  e 
CO, ppbv 128 ± 14 134 ± 40 138 ± 54 198 ± 40 b 153 – 233 e 
NOx, pptv 289 ± 201 48 ± 50 90 ± 100 50 ± 40 b 19 – 25d 
PAN, pptv 592 ± 159 210 ± 153 273 ± 182 360 ± 130 b 212 – 308 d 
HNO3, pptv 363 ± 304 159 ± 73 234 ± 294 70 ± 10b  
NOy, pptvf 1330 ± 458 528 ± 273 597 ± 353 640 ± 160b  
Ethane, pptv 882 ± 193 1353 ± 430 1243 ± 503 1600 ± 300b 1582 - 1979 d 
Acetylene, pptv 159 ± 40 396 ± 237 359 ± 254  360 - 504 d 
Acetone, ppbv 2.03 ± 0.91 0.57 ± 0.16 1.16 ± 0.43 1.4 ± 0.3b  
Methanol, ppbv 2.21 ± 1.02 0.72 ± 0.45 1.80 ± 0.87 1.5 ± 0.5b  
Benzene, pptv 24 ± 11 54 ± 46 69 ± 64 100 ± 100b 66 – 186 d 
Propane, pptv 149 ± 99 319 ± 177 264 ± 182 300 ± 200 b 324-535d 
HCN, pptv 420 ± 60   270 ± 78   
CH3CN, pptv 159 ± 30  159 ± 47  310 ± 100b  
CH4, ppbv 1815 ± 13 1761 ± 24  1813  ± 21  1827 -1838 d 
NO3

-, pptv 41 ± 40 40 ± 28  55 ± 66 34 c  
SO4

2-, pptv 111 ± 55 97 ± 58  222 ± 166 94 c  
C2O4

2-, pptv 15 ± 7 10 ± 5  17 ± 9   
NH4

+, pptv 130 ± 61 155 ± 94  193 ± 141   
Na+, pptv 105 ± 175 196 ± 115 233 ± 147 45 c  
K+, pptv 21 ± 20 45 ± 15  22 ± 20 75 c  
Mg2+, pptv 11 ± 16 27 ± 22  44 ± 66 20 c  
Ca2+, pptv 31 ± 46 51 ± 39 176 ± 262  73 c  
a For PEM-West B and TRACE-P, the value listed are the mean ± 1σ of all observations between 5-10 km at [25-50°N, 120-150°E]. 
b Mean ± 1σ of 7 transpacific transport plumes obtained during ITCT2K2 from Nowak et al. [2004]. 
c The highest 10%  concentration levels obtained during ITCT2K2 from Brock et al. [2004]. 
d Mean concentration ranges of Asian airmasses originating north of 40°N or west of 180°W sampled between 2-8 km during the PHOBEA 1999 
aircraft experiment [Kotchenruther et al., 2001]. 
e Mean concentration ranges in 6 Asian transpacific transport plumes observed in the free troposphere during the PHOBEA project between 1999 
and 2002  [Price et al., 2004]. 
f For PEM-West B and ITCT2K2, NOy was measured in situ, while for TRACE-P NOy represents the sum of observed NOx, HNO3, and PAN. 
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Table 4. Transport statistics and chemical characteristics of individual Asian plumes.  
 
 July 1 
 

Background 
Plume A Plume B 

August 2 
 

July 20 
 

August 14 
 

July 15 
 

Minutes sampled  29 33 102 60 17 14 

Export mechanisma  Convection WCB Convection, 
Typhoon WCB WCB, Typhoon WCB 

Mean theta (K) b  328 327 332 328 333 329 
Altitude (km) b  6.5-11.5 6.5-11.0 7.5-10.5 5-8 8-10 7-10 
Transport time c (days)  3 5 5-9 8 8-9 9 
O3, ppbv 73 88 (81) 106 (81) 110 (89) 93 (77) 83 (80) 73 (66) 
CO, ppbv 95 131 (125) 124 (111) 135 (95) 125 (111) 107 (91) 117 (117) 
H2O, ppmv 719 371 498 455 596 133 869 
Relative humidity, % 49 57 60 55 37 52 69 
NOx, pptv 285 136 (48) 161 (42) 266 (166) 411 (193) 415 (100) 392 (84) 
PAN, pptv 301 554 (259) 484 (295) 617 (257) 675 (306) 410 (197) 567 (341) 
PNs, pptv 295 427 373 547 532 210 614 
HNO3, pptv 245 115 (181) 188 (206) 591 (358) 288 (256) 154 (267) 206 (244) 
HNO4, pptv 53 67 64 118 62 39 98 
NOy, pptv 884 872 (595) 897 (518) 1592 (772) 1436 (749) 1018 (562) 1263 (648)
SO2, pptv 33 12 (9) 61 (10) 27 (10) 49 (19) 68 (100) 38 (9) 
HCN, pptv 285 441 447 429 381 472 354 
CH3CN, ppptv 147 158 167 156 155 161 178 
CH3OOH, pptv 215 240 168 130 181 140 134 
H2O2, pptv 505 1027 (828) 1094 (882) 385 (361) 508 (525) 312 (315) 416 (829) 
HCHO, pptv 237 NA (70) NA (70) 133 (134) 199 (216) 315 (50) 281 (223) 
Ethane, pptv 715 921 (1063) 835 (1081) 901 (723) 853 (814) 813 (656) 977 (913) 
Ethene, pptv 3 5 5 4 6 34 8 
Acetylene, pptv 80 169 156 171 159 130 116 
Propane, pptv 138 123 (218) 114 (224) 147 (104) 156 (134) 194 (91) 226 (164) 
Benzene, pptv 13 30 29 18 27 18 23 
Acetone, ppbv 1.46 2.59 (0.80) 1.47 (0.86) 2.05 (0.73) 2.29 (0.95) 1.49 (0.54) 1.47 (1.30)
Methanol, ppbv 1.32 2.60 1.49 2.06 2.22 1.90 3.98 
Ethanol, pptv 96 234 58 169 86 213 273 
CH4, ppbv 1791 1816 1808 1821 1810 1805 NA 
7Be, fCi/m3 497 272 229 634 1262 574 755 
NO3

-, pptv 27 142 103 35 18 38 19 
SO4

2-, pptv 60 121(137) 164 (130) 90 (49) 131 (62) 102 (106) 56 (94) 
C2O4

2-, pptv 6 12 15 19 14 8 6 
NH4

+, pptv 70 172(376) 213 (356) 108 (190) 136 (157) 107 (186) 70 (190) 
Na+, pptv 105 1883 122 44 58 53 166 
K+, pptv 30 14 47 14 14 14 59 
Mg2+, pptv 7 13 10 14 8 18 4 
Ca2+, pptv 22 122 17 22 19 95 15 
Fine sulfate aerosol, pptv 78 112 160 38 125 80 67 
Model Asian O3, ppbv 6 14 17 6 8 9 3 
Model Asian CO, ppbv 14 28 34 21 21 20 19 
Modeled trace gas mixing ratios are shown in parenthesis. For individual Asian plumes, concentrations of trace gases that are significantly enhanced with 
respect to background are in bold. Numbers in italics indicate that fewer than 5 measurement points were available.  
a Export mechanisms are determined by examining surface weather charts, SLP fields, and model convective diagnostics. 
b Altitude range of the plumes sampled by the DC-8 aircraft. 
c Transport time is estimated using back trajectories. 
e NA: Not Available. 
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Figure 1. Structure of the 3 leading Empirical Orthogonal Functions (EOF) identified by 
Principal Component Analysis applied to observations between 6 -12 km.  
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Figure 2. Scatter diagram of observed (a) 10-sec CO and O3, (b) 75-sec CO and PAN, and (c) 
6.5-sec CO and HNO3, (d) 2-min CO and SO4

2-, (e) 10-sec CO and HCN, (f) 1-min CO and 
acetylene, (g) 1-min O3 and NOy (NOy = NO + NO2 + PAN + HNO3 + HNO4), (h) 1-min CO and 
NOy within different airmasses between 6-12 km during INTEX-A.  Biomass burning plumes 
that have CO > 200 ppbv are not shown here. 
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Figure 3. Flight tracks of the NASA DC-8 aircraft during INTEX-A (July 1 – August 14, 2004).  
Filled circles indicate locations of Asian plumes identified using (a) Principal Component 
Analysis, (b) the GEOS-Chem Asian CO tracer, and (c) FSU back trajectories, size-scaled and 
color-scaled according to the observed CO levels.  
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Figure 4.  GEOS-Chem Asian CO tracer for the INTEX-A flight on 1 July, 2004.  Panel a): 
Asian CO at 369 hPa (8.8 km ) with the DC-8 flight track marked by the write thick line.  
Locations where plume A and B were sampled were highlighted in red and blue, respectively.  
Panel b): Curtain plot of Asian CO along the flight track.  The black circles with letter “A” and 
“B” indicate plumes A and B, respectively.  
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Figure 5.  Kinematic back trajectories for the 1 July 2004 Asian plume: 3 day back trajectories 
for plume A are shown in red and 5 day back-trajectories for plume B are shown in blue.  The 
thick black line indicates the flight track. 
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Figure 6.  Curtain plots of (a) observed in situ O3, (b) DIAL O3, and (c) model O3
  along the 1 

July 2004 flight track.  The black circles with letter “A” and “B” indicate plumes A and B, 
respectively.  
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Figure 7. Vertical profiles of observed CO, O3, HCN, PAN, and fine sulfate aerosols during the 
1 July 2004 flight are shown in panels a-b and d-f. Thick gray lines are the mean observed 
vertical profiles in background air.  Scatter plot of CO versus O3 is in panel c. The two Asian 
sub-plumes are highlighted in color: plume A in red and plume B in blue.   
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Figure 8.  MOPITT CO at 350 hPa (left panels), GEOS-Chem CO (with MOPITT kernel applied) 
at 350 hPa (middle panels), and GEOS-Chem Asian CO (right panels) at 369 hPa for 26 July, 28 
July, 31 July, and 2 August 2004.  MOPITT CO is regridded to the model resolution for 
comparison. Sea level pressure (contours) are also overplotted on the model CO. The white thick 
line on panel (j) indicates the flight track.  The circles and letter “C” and “D” indicates the 
location of subplumes C and D, respectively.  
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Figure 9.  8 day back trajectories for the 2 August Asian plume. The thick black line indicates 
the flight track. 
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Figure 10. Observed vertical profile of CO, O3, HCN, and HNO3 between 14 – 16.4 UTC during 
the 2 August 2004 flight are shown in panels a and c - e.  Note the change in the scale of x-axis 
in panel c from 0-150 ppbv to 150-400 ppbv.  Thick gray lines are the mean observed vertical 
profiles in background air. Scatter plot of CO versus O3 is in panel b. The Asian plume is 
highlighted in blue.   
 

 
 
 
 


